2025年6月28日 星期六

健康照護科技專題(二) Syllabus 2025 Fall

 


健康照護科技專題(二) 課程綱要 (Syllabus)

Special Topics in Healthcare Technology (II)
2025 Fall Semester


一、課程基本資訊 (Course Information)

  • 學分數: 3學分

  • 授課對象: 研究所碩專碩士學生


二、課程簡介 (Course Description)

本課程為「健康照護科技專題」的進階課程,聚焦於運用尖端人工智慧(AI)與電腦視覺(Computer Vision)技術,解決特定的健康照護挑戰。課程將從環境感知與空間識別出發,深入探討視覺障礙者的導航輔助技術,涵蓋障礙物偵測與智慧避障演算法。接著,課程將轉向心智健康與認知輔助領域,探索如何利用科技工具進行多工任務訓練以延緩失智,並導入AI於情感分析與心理諮商的應用。最後,課程將介紹一種專門的數據編碼技術 (Vibe Coding),並展望未來AI在醫療、復健及特殊需求照護領域的革命性發展。

本課程強調理論與實踐並重,學生將透過多次實作練習(Homework)與專題設計,將所學演算法與概念應用於真實世界的健康照護情境中。


三、課程目標 (Learning Objectives)

修習本課程後,學生應能:

  1. 分析與比較 視覺語言模型(VLM)與傳統電腦視覺在環境理解上的差異與應用。

  2. 設計與評估 一個針對視覺障礙者的安全路徑規劃系統原型。

  3. 實作與驗證 基於電腦視覺的動態與靜態障礙物偵測演算法。

  4. 理解並應用 Voronoi圖等核心演算法於無人載具或輔具的避障路徑規劃。

  5. 設計 針對心智障礙者或失智症患者的科技輔具或互動訓練遊戲。

  6. 探索與批判性評估 AI在情感分析與心理健康輔助應用中的潛力、可行性與倫理界線。

  7. 掌握 特定數據處理技術(Vibe Coding),並應用於不完整數據的分析與逆向工程。

  8. 整合與前瞻 AI、VR等新興科技在未來長期照護、復健醫療與特殊教育領域的應用趨勢。


四、授課方式 (Teaching Methods)

  • 主題式講授 (Thematic Lectures): 深入講解各單元核心概念與技術。

  • 案例分析 (Case Studies): 剖析國內外最新的健康照護科技產品與研究。

  • 實作工作坊 (Hands-on Workshops): 程式設計練習、演算法實作、輔具設計練習。

  • 分組討論與報告 (Group Discussion & Presentation): 針對特定議題進行探討與分享。

  • 專題導向學習 (Project-Based Learning): 學生將完成數個小型作業與一項期末專題報告。


五、評分方式 (Grading Policy)

  • 實作作業 (Homework Assignments): 

  • 課堂練習與參與 (In-class Exercises & Participation): 

  • 期末專題報告 (Final Project & Presentation): 


六、課程進度與內容 (Course Schedule & Content)


This course is structured thematically over 18 weeks. Each unit will cover specific concepts, theories, and practical applications, supported by in-class activities and homework assignments.

Weeks 1-2: Unit 1 - Understanding Environments (環境理解)
This introductory unit establishes the foundation for the course, focusing on how AI perceives and interprets physical spaces for healthcare applications.

  • 課程開場 (Course Introduction): Overview of syllabus, learning objectives, and grading policy.

  • 核心技術比較 (Core Technology Comparison):

    • Visual Language Models (VLM) vs. traditional AI Computer Vision.

    • Illustrative examples of how each technology interprets a scene.

  • 空間感知應用 (Spatial Awareness Applications):

    • 空間資訊擷取與識別輔助 (Acquiring and using spatial information for assistance).

    • 環境危害偵測 (Hazard Detection), e.g., identifying spills, obstacles, or unsafe conditions.

  • 前瞻性分析 (Forward-looking Analysis):

    • 意外事件預測與模擬 (Predicting and simulating potential accidents).

Weeks 3-4: Unit 2 - 盲人導航影像辨識 (Image Recognition for Visually Impaired Navigation)
This unit dives into a specific application: creating assistive navigation technology for individuals with visual impairments.

  • 場景辨識技術 (Scene Recognition Techniques): For both indoor and outdoor environments.

  • 3D導航的必要性 (The Need for 3D Navigation):

    • Discussion: Why is 2D information insufficient?

    • The role of depth information in constructing a safe and accurate spatial map.

  • 實作任務 (Practical Assignment):

    • 作業一 (HW#1) 發佈:盲人導航影像辨識 (Safe Route Planning). Students will be tasked with developing a concept or basic algorithm for identifying a safe path from visual data.

Weeks 5-6: Unit 3 - 障礙偵測演算法 (Obstacle Detection Algorithms)
Building on navigation, this unit focuses on the critical sub-problem of detecting potential obstacles in real-time.

  • 障礙物分類 (Obstacle Categorization):

    • Algorithms for static obstacle detection.

    • Techniques for dynamic obstacle detection and motion tracking.

  • 語意理解 (Semantic Understanding):

    • Is it a barrier or not? Applying semantic segmentation to differentiate between true obstacles and benign objects.

  • 進度考核 (Milestone & New Task):

    • 作業一 (HW#1) 繳交 (Submission).

    • 作業二 (HW#2) 發佈:障礙偵測演算法實作 (Obstacle Detection Implementation).

Weeks 7-8: Unit 4 - 避障演算法 (Obstacle Avoidance Algorithms)
Once an obstacle is detected, the system must intelligently navigate around it. This unit explores the algorithms that make this possible.

  • 核心演算法介紹 (Introduction to Core Algorithms):

    • An introduction to the Voronoi diagram and its application in pathfinding.

  • 應用案例分析 (Application Case Studies):

    • General strategies in autonomous vehicle obstacle avoidance.

    • Deep Dive: The OmniSafe Project

      • Following Voronoi on rural roads.

      • Following Voronoi in country alleys.

      • Voronoi-based safe routing planning.

Week 9: 期中回顧與專題討論 (Midterm Review & Project Discussion)
This week serves as a checkpoint to consolidate learning and begin planning for the final project.

  • 課程回顧 (Course Review): Synthesizing concepts from Units 1-4.

  • 進度考核 (Milestone):

    • 作業二 (HW#2) 繳交 (Submission).

  • 期末專題腦力激盪 (Final Project Brainstorm): Discussion of potential topics and formation of project groups.

Weeks 10-11: Unit 5 - 訊息處理與心智障礙生活輔助 (Information Processing for Cognitive Disability Assistance)
The course focus shifts from physical to cognitive and mental health assistance.

  • 認知訓練科技 (Technology for Cognitive Training):

    • Designing multi-tasking training programs to potentially delay dementia.

    • Applying gamification principles to enhance engagement.

  • 互動設計 (Interaction Design):

    • Principles of Human-Computer Interaction (HCI) for users with cognitive impairments.

  • 課堂實作練習 (In-Class Activity):

    • 練習:輔具設計腦力激盪 (Exercise: Assistive Device Design Brainstorm).

Weeks 12-13: Unit 6 - AI輔助情感分析 (AI-Powered Emotion Analysis)
This unit explores the sensitive and rapidly evolving field of using AI to understand and respond to human emotions.

  • 情感與AI (Emotion & AI):

    • 課堂實作練習:情感、情緒、人工智慧 (Exercise: Emotion, Mood, and AI).

    • Technical approaches to emotion detection (e.g., from text, voice, facial expressions).

  • AI與心理諮商 (AI in Counseling):

    • Discussion: The feasibility, potential, and ethical boundaries of AI-assisted psychotherapy.

  • 實作任務 (Practical Assignment):

    • 作業三 (HW#3) 發佈:諮商輔助App概念設計 (Counseling Assistance App Concept Design).

Week 14: Unit 6 (cont.) - AI輔助情感分析(II) (Emotion Analysis II)
This session continues the exploration of mental health tech with a focus on practical design and application.

  • 使用者介面設計 (User Interface Design):

    • Best practices for designing interfaces for mental health applications.

  • 專題應用探討 (Thematic Application Deep Dive):

    • Designing an app to help users establish healthy personal "boundaries."

  • 案例分析 (Case Study):

    • The process and importance of clinical validation for Mental Health Apps.

  • 進度考核 (Milestone):

    • 作業三 (HW#3) 繳交 (Submission).

Weeks 15-16: Unit 7 - Vibe Coding (特定數據編碼技術)
This unit introduces a specialized data processing methodology, exploring its principles and applications.

  • 從零開始 (From Scratch):

    • Understanding the foundational principles and implementing Vibe Coding.

  • 處理不完整數據 (Handling Imperfect Data):

    • Applying Vibe Coding to datasets with missing or incomplete information.

  • 逆向工程應用 (Reverse Engineering Application):

    • Using Vibe Coding as a tool for reverse engineering data formats or systems.

Week 17: Unit 8 - 展望未來 (Future Outlook) & Final Presentations (Part 1)
The final unit looks at the convergence of technologies and reviews groundbreaking achievements, while students begin to present their final projects.

  • 科技整合趨勢 (Technological Convergence):

    • The future of AI + VR + Gaming in healthcare and rehabilitation.

  • 關鍵突破回顧 (Significant Breakthrough Review - SVG):

    • The AI revolution in medicine (2022-2025).

    • Breakthroughs in AI for long-term care and geriatric rehabilitation.

    • Breakthroughs in AI applications for autism spectrum disorder.

  • 期末成果發表 (Final Presentations):

    • Presentations from the first half of the class.

Week 18: 期末成果發表 (Final Presentations) & 課程總結
The course concludes with the remaining project presentations and a final summary.

  • 期末成果發表 (Final Presentations):

    • Presentations from the second half of the class.

  • 課程總結 (Course Wrap-up):

    • Review of key takeaways from the semester.

    • Discussion of future learning paths and career opportunities in healthcare technology.



七、指定用書與參考資料 (Textbooks & References)

  • 指定用書: 無。本課程將提供每週主題所需之學術論文、技術文件、線上文章與程式碼範例。

  • 參考資料:

    • 學術期刊:IEEE Transactions on Affective Computing, IEEE Transactions on Neural Systems and Rehabilitation Engineering, JMIR (Journal of Medical Internet Research), etc.

    • 技術文獻:OpenCV, TensorFlow, PyTorch 官方文件。

    • 線上資源:arXiv, Google Scholar, Medium (Towards Data Science)。


八、學術誠信 (Academic Integrity)

所有繳交的作業與報告皆須為學生個人或該組別的原創成果。嚴禁任何形式的抄襲或舞弊行為。若引用他人資料,必須註明出處。違反學術倫理之規定,將依校規處理,該次作業或報告以零分計算。



線上資源


Unit 1: Understanding environments

VLM vs. AI  Vision (illustrate)


AI輔助情感分析(II)   (界線主題app )


Mental Health App 心理健康遊戲應用程式的臨床驗證





Unit 7:


Vibe Coding from scratch

沒有留言:

張貼留言