健康照護科技專題(二) 課程綱要 (Syllabus)
學分數: 3學分授課對象: 研究所碩專碩士學生
分析與比較 視覺語言模型(VLM)與傳統電腦視覺在環境理解上的差異與應用。設計與評估 一個針對視覺障礙者的安全路徑規劃系統原型。實作與驗證 基於電腦視覺的動態與靜態障礙物偵測演算法。理解並應用 Voronoi圖等核心演算法於無人載具或輔具的避障路徑規劃。設計 針對心智障礙者或失智症患者的科技輔具或互動訓練遊戲。探索與批判性評估 AI在情感分析與心理健康輔助應用中的潛力、可行性與倫理界線。掌握 特定數據處理技術(Vibe Coding),並應用於不完整數據的分析與逆向工程。整合與前瞻 AI、VR等新興科技在未來長期照護、復健醫療與特殊教育領域的應用趨勢。
主題式講授 (Thematic Lectures): 深入講解各單元核心概念與技術。案例分析 (Case Studies): 剖析國內外最新的健康照護科技產品與研究。實作工作坊 (Hands-on Workshops): 程式設計練習、演算法實作、輔具設計練習。分組討論與報告 (Group Discussion & Presentation): 針對特定議題進行探討與分享。專題導向學習 (Project-Based Learning): 學生將完成數個小型作業與一項期末專題報告。
實作作業 (Homework Assignments): 課堂練習與參與 (In-class Exercises & Participation): 期末專題報告 (Final Project & Presentation):
課程開場 (Course Introduction): Overview of syllabus, learning objectives, and grading policy.核心技術比較 (Core Technology Comparison): Visual Language Models (VLM) vs. traditional AI Computer Vision. Illustrative examples of how each technology interprets a scene.
空間感知應用 (Spatial Awareness Applications): 空間資訊擷取與識別輔助 (Acquiring and using spatial information for assistance). 環境危害偵測 (Hazard Detection), e.g., identifying spills, obstacles, or unsafe conditions.
前瞻性分析 (Forward-looking Analysis): 意外事件預測與模擬 (Predicting and simulating potential accidents).
場景辨識技術 (Scene Recognition Techniques): For both indoor and outdoor environments.3D導航的必要性 (The Need for 3D Navigation): Discussion: Why is 2D information insufficient? The role of depth information in constructing a safe and accurate spatial map.
實作任務 (Practical Assignment): 作業一 (HW#1) 發佈:盲人導航影像辨識 (Safe Route Planning). Students will be tasked with developing a concept or basic algorithm for identifying a safe path from visual data.
障礙物分類 (Obstacle Categorization): Algorithms for static obstacle detection. Techniques for dynamic obstacle detection and motion tracking.
語意理解 (Semantic Understanding): Is it a barrier or not? Applying semantic segmentation to differentiate between true obstacles and benign objects.
進度考核 (Milestone & New Task): 作業一 (HW#1) 繳交 (Submission). 作業二 (HW#2) 發佈:障礙偵測演算法實作 (Obstacle Detection Implementation).
核心演算法介紹 (Introduction to Core Algorithms): An introduction to the Voronoi diagram and its application in pathfinding.
應用案例分析 (Application Case Studies): General strategies in autonomous vehicle obstacle avoidance. Deep Dive: The OmniSafe Project Following Voronoi on rural roads. Following Voronoi in country alleys. Voronoi-based safe routing planning.
課程回顧 (Course Review): Synthesizing concepts from Units 1-4.進度考核 (Milestone): 作業二 (HW#2) 繳交 (Submission).
期末專題腦力激盪 (Final Project Brainstorm): Discussion of potential topics and formation of project groups.
認知訓練科技 (Technology for Cognitive Training): Designing multi-tasking training programs to potentially delay dementia. Applying gamification principles to enhance engagement.
互動設計 (Interaction Design): Principles of Human-Computer Interaction (HCI) for users with cognitive impairments.
課堂實作練習 (In-Class Activity): 練習:輔具設計腦力激盪 (Exercise: Assistive Device Design Brainstorm).
情感與AI (Emotion & AI): 課堂實作練習:情感、情緒、人工智慧 (Exercise: Emotion, Mood, and AI). Technical approaches to emotion detection (e.g., from text, voice, facial expressions).
AI與心理諮商 (AI in Counseling): Discussion: The feasibility, potential, and ethical boundaries of AI-assisted psychotherapy.
實作任務 (Practical Assignment): 作業三 (HW#3) 發佈:諮商輔助App概念設計 (Counseling Assistance App Concept Design).
使用者介面設計 (User Interface Design): Best practices for designing interfaces for mental health applications.
專題應用探討 (Thematic Application Deep Dive): Designing an app to help users establish healthy personal "boundaries."
案例分析 (Case Study): The process and importance of clinical validation for Mental Health Apps.
進度考核 (Milestone): 作業三 (HW#3) 繳交 (Submission).
從零開始 (From Scratch): Understanding the foundational principles and implementing Vibe Coding.
處理不完整數據 (Handling Imperfect Data): Applying Vibe Coding to datasets with missing or incomplete information.
逆向工程應用 (Reverse Engineering Application): Using Vibe Coding as a tool for reverse engineering data formats or systems.
科技整合趨勢 (Technological Convergence): The future of AI + VR + Gaming in healthcare and rehabilitation.
關鍵突破回顧 (Significant Breakthrough Review - SVG): The AI revolution in medicine (2022-2025). Breakthroughs in AI for long-term care and geriatric rehabilitation. Breakthroughs in AI applications for autism spectrum disorder.
期末成果發表 (Final Presentations): Presentations from the first half of the class.
期末成果發表 (Final Presentations): Presentations from the second half of the class.
課程總結 (Course Wrap-up): Review of key takeaways from the semester. Discussion of future learning paths and career opportunities in healthcare technology.
指定用書: 無。本課程將提供每週主題所需之學術論文、技術文件、線上文章與程式碼範例。參考資料: 學術期刊:IEEE Transactions on Affective Computing, IEEE Transactions on Neural Systems and Rehabilitation Engineering, JMIR (Journal of Medical Internet Research), etc. 技術文獻:OpenCV, TensorFlow, PyTorch 官方文件。 線上資源:arXiv, Google Scholar, Medium (Towards Data Science)。
線上資源
Unit 1: Understanding environments
VLM vs. AI Vision (illustrate)
- Unit 3: 障礙偵測演算法
- Unit 4: 避障演算法
- Voronoi an introduction
- 無人車避障
- Obstacle Avoidance
- OmniSafe: Follow Voronoi (Rural Road)
- OmniSafe: Follow Voronoi (Country Alley)
- OmniSafe: Safe Routing Planning (Voronoi-based)
- Unit 5: 訊息處理,心智障礙生活輔助
練習:輔具設計
Unit 6: AI輔助情感分析
練習:情感,情緒,人工智慧
Mental Health App 心理健康遊戲應用程式的臨床驗證
Unit 7:
沒有留言:
張貼留言